4.8 Article

Amplified effect of Brownian motion in bacterial near-surface swimming

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0807305105

关键词

Caulobacter; adhesion; Derjaguin-Landau-Verwey-Overbeek theory; hydrodynamics

资金

  1. National Science Foundation [DMR 0405156]
  2. National Institutes of Health [GM077648]

向作者/读者索取更多资源

Brownian motion influences bacterial swimming by randomizing displacement and direction. Here, we report that the influence of Brownian motion is amplified when it is coupled to hydrodynamic interaction. We examine swimming trajectories of the singly flagellated bacterium Caulobacter crescentus near a glass surface with total internal reflection fluorescence microscopy and observe large fluctuations over time in the distance of the cell from the solid surface caused by Brownian motion. The observation is compared with computer simulation based on analysis of relevant physical factors, including electrostatics, van der Waals force, hydrodynamics, and Brownian motion. The simulation reproduces the experimental findings and reveals contribution from fluctuations of the cell orientation beyond the resolution of present observation. Coupled with hydrodynamic interaction between the bacterium and the boundary surface, the fluctuations in distance and orientation subsequently lead to variation of the swimming speed and local radius of curvature of swimming trajectory. These results shed light on the fundamental roles of Brownian motion in microbial motility, nutrient uptake, and adhesion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据