4.8 Article

Photodynamic therapy plus low-dose cyclophosphamide generates antitumor immunity in a mouse model

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0709256105

关键词

immunosuppression; cytotoxic T lymphocytes; benzoporphyrin derivative; regulatory T cells; tumor-associated antigen

向作者/读者索取更多资源

Photodynamic therapy (PDT) is a modality for the treatment of cancer involving excitation of nontoxic photosensitizers with harmless visible light-producing cytotoxic reactive oxygen species. PDT causes apoptosis and necrosis of tumor cells, destruction of the tumor blood supply, and activation of the immune system. The objective of this study was to compare in an animal model of metastatic cancer PDT alone and PDT combined with low-dose cyclophosphamide (CY) a treatment that has been proposed to deplete regulatory T cells (T-regs) and increase the immune response to some tumors. We used J774 tumors (a highly metastatic reticulum cell sarcoma line) and PDT with benzoporphyrin derivative monoacid ring A, verteporfin for injection (BPD; 1-mg/kg injected i.v. followed after 15 min by 150 J/cm(2) of 690-nm light). CY (50 or 150 mg/kg i.p.) was injected 48 h before light delivery. PDT alone led to tumor regressions and a survival advantage but no permanent cures were obtained. BPD-PDT in combination with low-dose CY (but not high-dose CY) led to 70% permanent cures. Low-dose CY alone gave no permanent cures but did provide a survival advantage and was shown to reduce CD4+FoxP3+ T-regs in lymph nodes, whereas high-dose CY reduced other lymphocyte classes as well. Cured animals were rechallenged with J774 cells, and the tumors were rejected in 71% of mice. Cured mice had tumor-specific T cells in spleens as determined by a Cr-51 release assay. We conclude that low-dose CY depletes T-regs and potentiates BPD-PDT, leading to tumor cures and memory immunity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据