4.8 Article

Decyanation of vitamin B12 by a trafficking chaperone

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0805989105

关键词

cobalamin; flavin oxidoreductase; methylmalonic aciduria; homocystinuria; cyanide

资金

  1. National Institutes of Health [DK45776]

向作者/读者索取更多资源

The mystery of how the cyanide group in vitamin B-12 or cyanocobalamin, discovered 60 years ago, is removed, has been solved by the demonstration that the trafficking chaperone, MMACHC, catalyzes a reductive decyanation reaction. Electrons transferred from NADPH via cytosolic flavoprotein oxidoreductases are used to cleave the cobalt-carbon bond with reductive elimination of the cyanide ligand. The product, cob(II)alamin, is a known substrate for assimilation into the active cofactor forms, methylcobalamin and 5'-deoxyadenosylcobalamin, and is bound in the base-off state that is needed by the two B-12-dependent target enzymes, methionine synthase and methylmalonyl-CoA mutase. Defects in MMACHC represent the most common cause of inborn errors of B12 metabolism, and our results explain the observation that fibroblasts from these patients are poorly responsive to vitamin B12 but show some metabolic correction with aquocobalamin, a cofactor form lacking the cyanide ligand, which is mirrored by patients showing poorer clinical responsiveness to cyano- versus aquocobalamin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据