4.8 Article

Thermostability of model protocell membranes

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0805086105

关键词

origin of life; RNA world; synthetic biology; vesicle; prebiotic

资金

  1. National Institutes of Health [F32 GM07450601]
  2. NASA Exobiology Program [EXB02-0031-0018]

向作者/读者索取更多资源

The earliest cells may have consisted of a self-replicating genetic polymer encapsulated within a self-replicating membrane vesicle. Here, we show that vesicles composed of simple single-chain amphiphiles such as fatty acids, fatty alcohols, and fatty-acid glycerol esters are extremely thermostable and retain internal RNA and DNA oligonucleotides at temperatures ranging from 0 degrees C to 100 degrees C. The strands of encapsulated double-stranded DNA can be separated by denaturation at high temperature while being retained within vesicles, implying that strand separation in primitive protocells could have been mediated by thermal fluctuations without the loss of genetic material from the protocell. At elevated temperatures, complex charged molecules such as nucleotides cross fatty-acid-based membranes very rapidly, suggesting that high temperature excursions may have facilitated nutrient uptake before the evolution of advanced membrane transporters. The thermostability of these membranes is consistent with the spontaneous replication of encapsulated nucleic acids by the alternation of template-copying chemistry at low temperature with strand-separation and nutrient uptake at high temperature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据