4.8 Article

Actin-binding cleft closure in myosin II probed by site-directed spin labeling and pulsed EPR

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0802286105

关键词

double electron-electron resonance; dipolar interaction; actomyosin

资金

  1. National Institutes of Health [AR32961, AG26160, RR22362]
  2. Minnesota Supercomputing Institute
  3. National Institutes of Health Training [GM08700, AR07612]
  4. National Science Foundation Training [CHE-0452204]

向作者/读者索取更多资源

We present a structurally dynamic model for nucleoticle- and actin-induced closure of the actin-binding cleft of myosin, based on site-directed spin labeling and electron paramagnetic resonance (EPR) in Dictyostelium myosin It. The actin-binding cleft is a solvent-filled cavity that extends to the nucleotide-binding pocket and has been predicted to close upon strong actin binding. Single-cysteine labeling sites were engineered to probe mobility and accessibility within the cleft. Addition of ADP and vanadate, which traps the posthydrolysis biochemical state, influenced probe mobility and accessibility slightly, whereas actin binding caused more dramatic changes in accessibility, consistent with cleft closure. We engineered five pairs of cysteine labeling sites to, straddle the cleft, each pair having one label on the upper 50-kDa domain and one on the lower 50-kDa domain. Distances between spin-labeled sites were determined from the resulting spin-spin interactions, as measured by continuous wave EPR for distances of 0.7-2 nm or pulsed EPR (double electron-electron resonance) for distances of 1.7-6 nm. Because of the high distance resolution of EPR, at least two distinct structural states of the cleft were resolved. Each of the biochemical states tested (prehydrolysis, posthydrolysis, and rigor), reflects a mixture of these structural states, indicating that the coupling between biochemical and structural states is not rigid. The resulting model is much more dynamic than previously envisioned, with both open and closed conformations of the cleft interconverting, even in the rigor actomyosin complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据