4.8 Article

Dual-targeted tRNA-dependent amidotransferase ensures both mitochondrial and chloroplastic Gln-tRNAGln synthesis in plants

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0712299105

关键词

amidation; aminoacylation; GatCAB; glutamyl-tRNA synthetase; protein trafficking

向作者/读者索取更多资源

Aminoacyl-tRNAs are generally formed by direct attachment of an amino acid to tRNAs by aminoacyl-tRNA synthetases, but Gln-tRNA is an exception to this rule. Gln-tRNA(Gln) is formed by this direct pathway in the eukaryotic cytosol and in protists or fungi mitochondria but is formed by an indirect transamidation pathway in most of bacteria, archaea, and chloroplasts. We show here that the formation of Gln-tRNA(Gln) is also achieved by the indirect pathway in plant mitochondria. The mitochondrial-encoded tRNA(Gln), which is the only tRNA(Gln) present in mitochondria, is first charged with glutamate by a nondiscriminating GluRS, then is converted into Gln-tRNA(Gln) by a tRNA-dependent amidotransferase (AdT). The three subunits GatA, GatB, and GatC are imported into mitochondria and assemble into a functional GatCAB AdT. Moreover, the mitochondrial pathway of Gln-tRNA(Gln) formation is shared with chloroplasts as both the GluRS, and the three AdT subunits are dual-imported into mitochondria and chloroplasts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据