4.8 Article

Controlling energy transfer between multiple dopants within a single nanoparticle

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0711638105

关键词

core-shell; rare earth

向作者/读者索取更多资源

Complex core-shell architectures are implemented within LaF3 nanoparticles to allow for a tailored degree of energy transfer (ET) between different rare earth clopants. By constraining specific clopants to individual shells, their relative distance to one another can be carefully controlled. Core-shell LaF3 nanoparticles doped with Tb3+ and EU3+ and consisting of up to four layers were synthesized with an outer diameter of approximate to 10 nm. It is found that by varying the thicknesses of an undoped layer between a Tb3+- doped layer and a EU3+-doped layer, the degree of ET can be engineered to allow for zero, partial, or total ET from a donor ion to an acceptor ion. More specifically, the ratio of the intensities of the 541-nm Tb3+ and 590 nm Eu3+ peaks was tailored from <0.2 to approximate to 2.4 without changing the overall composition of the particles but only by changing the internal structure. Further, the emission spectrum of a blend of singly doped nanoparticles is shown to be equivalent to the spectra of co-doped particles when a core-shell configuration that restricts ET is used. Beyond simply controlling ET, which can be limiting when designing materials for optical applications, this approach can be used to obtain truly engineered spectral features from nanoparticles and composites made from them. Further, it allows for a single excitation source to yield multiple discrete emissions from numerous lanthanide clopants that heretofore would have been quenched in a more conventional active optical material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据