4.8 Article

Structural insight into the reaction mechanism and evolution of cytokinin biosynthesis

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0707374105

关键词

Agrobacterium tumefaciens; crystal structure; isopentenyltransferase; trans-zeatin; p loop-containing nucleoside triphosphate hydrolases

向作者/读者索取更多资源

The phytohormone cytokinin regulates plant growth and development. This hormone is also synthesized by some phytopathogenic bacteria, such as Agrobacterium tumefaciens, and is as a key factor in the formation of plant tumors. The rate-limiting step of cytokinin biosynthesis is catalyzed by adenosine phosphate-isopentenyltransferase (IPT). Agrobacterium IPT has a unique substrate specificity that enables it to increase trans-zeatin production by recruiting a metabolic intermediate of the host plant's biosynthetic pathway. Here, we show the crystal structures of Tzs, an IPT from A. tumiefaciens, complexed with AMP and a prenyl-donor analogue, dimethylallyl S-thiodiphosphate. The structures reveal that the carbon-nitrogen-based prenylation proceeds by the SN2-reaction mechanism. Site-directed mutagenesis was used to determine the amino acid residues, Asp-173 and His-214, which are responsible for differences in prenyl-clonor substrate specificity between plant and bacterial IPTs. IPT and the p loop-containing nucleoside triphosphate hydrolases likely evolved from a common ancestral protein. Despite structural similarities, IPT has evolved a distinct role in which the p loop transfers a prenyl moiety in cytokinin biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据