4.8 Article

Mutant dynein (Loa) triggers proprioceptive axon loss that extends survival only in the SOD1 ALS model with highest motor neuron death

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0805422105

关键词

cytoplasmic dynein; excitotoxicity; noncell autonomous; sensory neurons

资金

  1. National Institutes of Health [R37 NS 27036]
  2. Muscular Dystrophy Association
  3. Ludwig Institute for Cancer Research

向作者/读者索取更多资源

Dominant mutations in cytoplasmic dynein (Loa or Cra) have been reported to provoke selective, age-dependent killing of motor neurons, while paradoxically slowing degeneration and death of motor neurons in one mouse model of an inherited form of ALS. Examination of Loa animals reveals no degeneration of large caliber alpha-motor neurons beyond an age-dependent loss (initiating only after 18 months) that was comparable in Loa and wild-type littermates. Absence of Loa-mediated alpha-motor neuron loss contrasted with dramatic, sustained, mutant dynein-mediated postnatal loss of lumbar proprioceptive sensory axons, accompanied by decreased excitatory glutamatergic inputs to motor neurons. In mouse models of inherited ALS caused by mutations in superoxide dismutase (SOD1), mutant dynein modestly prolonged survival in the one mouse model with the most extensive motor neuron loss (SODG93A) while showing marginal (SODG85R) or no (SODG37R) benefit in models with higher numbers of surviving motor neurons at end stage. These findings support a noncell autonomous, excitotoxic contribution from proprioceptive sensory neurons that modestly accelerates disease onset in inherited ALS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据