4.8 Article

Understanding ligand-based modulation of the Hsp90 molecular chaperone dynamics at atomic resolution

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0802879105

关键词

allosteric regulation; binding energy landscapes; protein dynamics; protein folding

向作者/读者索取更多资源

Molecular switching and ligand-based modulation of the 90-kDa heat-shock protein (Hsp90) chaperone activity may ultimately facilitate conformational coupling to the ATPase cycle along with activation and recruitment of the broad range of client proteins. We present an atomic resolution analysis of the Hsp90 N-terminal domain (NTD) binding energy landscape by simulating protein dynamics with a range of binding partners. We show that the activity of the molecular chaperone may be linked to (i) local folding-unfolding transitions and conformational switching of the active site lid upon binding and (it) differences in the underlying protein dynamics as a function of the binding partner. This study suggests that structural plasticity of the Hsp90 NTD can be exploited by the molecular chaperone machinery to modulate enhanced structural rigidity during ATP binding and increased protein flexibility as a consequence of the inhibitor binding. The present study agrees with the experimental structural data and provides a plausible molecular model for understanding mechanisms of modulation of molecular chaperone activities by binding partners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据