4.3 Article

Robust stability control of vehicle rollover subject to actuator time delay

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1243/09596518JSCE471

关键词

active roll control; robust stability; parameter-dependent control; actuator time delay

向作者/读者索取更多资源

This paper presents a parameter-dependent robust controller design approach for active roll control of a vehicle with consideration of parameter uncertainties and actuator time delays. The objective is to improve the roll stability of the vehicle and to reduce the roll angle response during aggressive driving manoeuvres in spite of variations in vehicle parameters and the existence of actuator time delays. Sufficient conditions for stabilizing the uncertain vehicle system with input delays are derived by defining a parameter-dependent Lyapunov functional. With recourse to the random search capability of genetic algorithms (GAs), a parameter-dependent controller is found by solving a finite number of linear matrix inequalities (LMIs). Numerical simulations on a three-degree-of-freedom (3-DOF) yaw-roll vehicle model demonstrate that the designed parameter-dependent controller can improve the roll stability of the vehicle and achieve good roll control performance even when the vehicle forward speed varies in a large range and a large actuator time delay exists within allowable bounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据