4.2 Article

Mechanical properties and in-vivo performance of calcium phosphate cement-chitosan fibre composite

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1243/09544119JEIM340

关键词

calcium phosphate cement; chitosan fibre; mechanical properties; in-vivo performance

向作者/读者索取更多资源

Self-hardened calcium phosphate cement (CPC) sets to form hydroxyapatite and possesses excellent osteoconductivity. However, lack of macroporosity and low strength constrain its application in bone tissue engineering. Recent studies have incorporated various fibres into CPC to improve its mechanical strength. The present approach focused on the reinforcement of CPC with chitosan fibres and then the effects of the fibre structure on the mechanical properties and macrochannels formation characteristics of CPC-fibre composite were investigated. Chitosan fibres of diameter 200 mu m were used to fabricate two types of three-dimensional structure, which were then coated with collagen and incorporated into CPC to fabricate CPC-fibre implants with a fibre volume content of 5 per cent. The compressive strength of the CPC-fibre implant was 33 MPa when the strain was 2.4 per cent, which is fourfold higher than that of the CPC control. Nine cylindrical implants including six CPC-fibre implants were implanted in the bone defects of nine dogs and were then post-operatively observed. After 20 weeks in vivo, new callus from the healthy tissue of the defect entirely integrated with the CPC-fibre implant and new bone was formed as the implant degraded. Scanning electronic microscopy images indicated that macrochannels were formed in the CPC-fibre implants with the degradation of fibres, but only micropores with a scale of less than 50 mu m could be observed in the CPC control. Briefly, the incorporation of a suitable chitosan-fibre structure into a CPC implant not only could improve its mechanical properties but also facilitated the bone repair process in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据