4.7 Article

The NLRP3 inflammasome is activated by nanoparticles through ATP, ADP and adenosine

期刊

CELL DEATH & DISEASE
卷 6, 期 -, 页码 -

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2014.576

关键词

-

资金

  1. Fonds de Dotation pour la Recherche en Sante Respiratoire
  2. Agence Nationale de la Recherche
  3. Conseil General du Loire

向作者/读者索取更多资源

The NLR pyrin domain containing 3 (NLRP3) inflammasome is a major component of the innate immune system, but its mechanism of activation by a wide range of molecules remains largely unknown. Widely used nano-sized inorganic metal oxides such as silica dioxide (nano-SiO2) and titanium dioxide (nano-TiO2) activate the NLRP3 inflammasome in macrophages similarly to silica or asbestos micro-sized particles. By investigating towards the molecular mechanisms of inflammasome activation in response to nanoparticles, we show here that active adenosine triphosphate (ATP) release and subsequent ATP, adenosine diphosphate (ADP) and adenosine receptor signalling are required for inflammasome activation. Nano-SiO2 or nano-TiO2 caused a significant increase in P2Y1, P2Y2, A2(A) and/or A2(B) receptor expression, whereas the P2X7 receptor was downregulated. Interestingly, IL-1 beta secretion in response to nanoparticles is increased by enhanced ATP and ADP hydrolysis, whereas it is decreased by adenosine degradation or selective A2(A) or A2(B) receptor inhibition. Downstream of these receptors, our results show that nanoparticles activate the NLRP3 inflammasome via activation of PLC-InsP3 and/or inhibition of adenylate cyclase (ADCY)-cAMP pathways. Finally, a high dose of adenosine triggers inflammasome activation and IL-1 beta secretion through adenosine cellular uptake by nucleotide transporters and by its subsequent transformation in ATP by adenosine kinase. In summary, we show for the first time that extracellular adenosine activates the NLRP3 inflammasome by two ways: by interacting with adenosine receptors at nanomolar/micromolar concentrations and through cellular uptake by equilibrative nucleoside transporters at millimolar concentrations. These findings provide new molecular insights on the mechanisms of NLRP3 inflammasome activation and new therapeutic strategies to control inflammation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据