4.5 Article

Machining behaviour of three high-performance engineering plastics

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/0954405414525142

关键词

Drilling; polymeric material; engineering plastics; thrust force; geometrical errors

向作者/读者索取更多资源

Polymeric materials have been widely used to replace traditional metallic materials due to their high specific elastic properties. Even though polymeric materials can be produced as near net shapes, machining is still required to make the assembling of the final products. The selection of tool and cutting conditions is very important to machine plastics because of the high ductility and low melting point of the materials. In this study, the machining behaviour of high-performance engineering polymers, such as ultra-high-molecular-weight polyethylene, polyoxymethylene and polytetrafluoroethylene, has been investigated using a full-factorial design (design of experiment). The effect of the factors such as feed speed, spindle speed and drill point angle was identified for each of the response variables (circularity error, surface roughness (R-a) and thrust force (F-f)). The drilling mechanism was substantially affected by the physical and mechanical properties of the polymers. Different cutting set-up conditions were able to optimize the responses. The polytetrafluoroethylene exhibited better results, achieving lower circularity error, surface roughness and thrust force. In the opposite manner, the ultra-high-molecular-weight polyethylene exhibited a rough topography at low feed rate and spindle speed levels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据