4.0 Article

A highly efficient 2D flood model with sub-element topography

出版社

ICE PUBLISHING
DOI: 10.1680/wama.12.00021

关键词

floods & floodworks; hydraulics & hydrodynamics; mathematical modelling

资金

  1. HR Wallingford's internal research programme
  2. Herriot Watt's PhD scholarship scheme

向作者/读者索取更多资源

The need for large-scale and regional probabilistic simulations means that two-dimensional (2D) inundation models are still limited by computational requirements. In addition to parallelisation and physical process simplification, attempts to reduce runtimes typically involve coarsening the computational mesh, which can smooth important topographic features and hence limit accuracy. This paper presents a new 2D flow model that uses an enhanced diffusion-wave algorithm, and incorporates sub-element topography in a computational mesh that adapts to the terrain features. The model utilises a fine topographic resolution without having to use a fine computation mesh, and so achieves fast computational runtimes. The model has been tested against the UK Environment Agency's 2D benchmarking tests, and even though the model is designed to operate at larger spatial scales than those in the benchmarking tests, it is shown to provide comparable accuracy relative to a selection of conventional 2D models, at significantly faster computational speeds. The model therefore has the potential to offer a step change in performance of large-scale probabilistic flood mapping and systems flood risk analysis modelling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据