4.7 Article

Energy Storage via Carbon-Neutral Fuels Made From CO2, Water, and Renewable Energy

期刊

PROCEEDINGS OF THE IEEE
卷 100, 期 2, 页码 440-460

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPROC.2011.2168369

关键词

BPMED; CO2; electrofuel; fuel; internal combustion engine; methane; methanol; transport

资金

  1. King Abdulaziz City of Science and Technology
  2. EPSRC
  3. Sir John Houghton Fellowship

向作者/读者索取更多资源

Fossil fuels are renewable only over geological time scales. The oxidation, via combustion, of considerable amounts of carbonaceous fuels since the dawn of the industrial revolution has led to a rapid accumulation of CO2 in the atmosphere leading to an anthropogenic influence on the Earth's climate. We highlight here that a versatile energy carrier can be produced by recycling CO2 and combining it chemically with a substance of high chemical bond energy created from renewable energy. If CO2 is taken from the atmosphere, a closed-loop production process for carbon-neutral fuels is possible providing an energy-dense and easily distributed storage medium for renewable energy. The rationale for reduced carbon or carbon-neutral energy carriers made from recycled CO2 is described, focusing on, for transport applications, their manifestation as energy-dense carbonaceous liquid fuels. Techniques for the separation of CO2 directly from the atmosphere are reviewed, and the challenges and advantages relative to flue-gas capture are discussed. Pathways for the production of carbonaceous fuels from CO2 are discussed. An integrated system is proposed where renewable energy is stored in the form of synthetic methane in the gas grid for supply to the power generation and heat sectors while methanol and drop-in hydrocarbon fuels are supplied to the transport sector. The use of atmospheric CO2 and water as feed stocks for renewable energy carriers raises the important prospect of alleviating a dependency on imported fossil energy with the associated large financial transfers. Their application in the transport sector yields a high-value end product. The synthesis and storage of carbon-neutral liquid fuels offers the possibility of decarbonizing transport without the paradigm shifts required by either electrification of the vehicle fleet or conversion to a hydrogen economy. They can be supplied either as drop-in hydrocarbon fuels for existing reciprocating and turbine-powered combustion engines or, at lower energetic cost and using simpler chemical plant, in the form of low-carbon-number alcohols which can be burned at high efficiency levels in optimized internal combustion engines. The suitability of these fuels for conventional engines enables the continued provision of globally compatible, affordable vehicles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据