4.6 Article

Investigating the role of solvent formulations in temperature-controlled liquid-fed aerosol flame synthesis of YAG-based nanoparticles

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 37, 期 1, 页码 1193-1201

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2018.07.068

关键词

Liquid-fed flame synthesis; Solvent formulation; Temperature history; 2-ethylhexanoic acid

资金

  1. National Natural Science Foundation of China [51676109]
  2. National Science Fund for Distinguished Young Scholars of China [51725601]
  3. Army Research Office [W911NF-16-1-0015]

向作者/读者索取更多资源

Key effects of solvent formulations on the structure and morphology of optical-quality yttrium-aluminum nanocomposites using liquid-fed aerosol flame synthesis are investigated. Employing a temperature-controlled flat flame burner with inexpensive nitrates as multi-component precursors, three different solvent formulations, i.e., ethanol, ethanol/2-ethylhexanoic acid (EHA), and butanol, are studied. Adding EHA into ethanol in a 1:1 volume ratio dramatically changes the flame-made yttrium-aluminum oxides from hollow inhomogeneous powders that contain non-uniform large particles to homogeneous nanopowders around 10 nm. As characterized by in-situ phase Doppler anemometry, droplet size with increasing burner height for the EHA/ethanol case remains constant at the beginning, whereas those for both ethanol and butanol cases reduce immediately. EHA likely causes a shift from the droplet-to-particle precipitation route to the gas-toparticle route because of the formed low-boiling-point 2-ethylhexanoates from nitrates via ligand exchange. By replacing ethanol with butanol, hollow particles are produced with better crystallinity because of its high calorific value that helps to heat precursors at the droplet surface. In-situ diagnostics using phase-selective laser-induced breakdown spectroscopy, which tracks only atomic emission from the nanoparticle phase. The result shows that the Al atomic emissions in the EHA/ethanol mixture case gradually increase along the burner height, while those for both ethanol and butanol cases fluctuate, further verifying the favoring of the gas-to-particle route for producing uniform, ultrafine solid multi-oxide particles by adding EHA in solvents. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据