4.6 Article

Detailed simulation of primary atomization mechanisms in Diesel jet sprays (isolated identification of liquid jet tip effects)

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 33, 期 -, 页码 2089-2097

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2010.07.006

关键词

Primary atomization mechanisms; Diesel spray; Detailed numerical simulation

向作者/读者索取更多资源

In this study, the atomization characteristics of Diesel jet front tip have been investigated to elucidate the physical mechanisms by detailed numerical simulation. The computations are carried out with the finest grid resolutions ever that can resolve the final droplet generation by surface tension. The numerical methods are based on level-set interface tracking. The methods were validated by test cases and the grid resolution survey shows that the resolutions for the present study are sufficient. The present flow setup excludes nozzle disturbances to investigate how the disturbances from the liquid jet front would lead to atomization where the liquid jet impacts against the quiescent gas. The liquid jet front becomes an umbrella-like shape. From the front umbrella tip edge, ligament breakup first occurs. Ligament breakup is strongly correlated with the gas motion in the vicinity. The gas region behind the front is highly disturbed by atomization. By the gas recirculation motion here, air and some droplets are entrained and mixed. Also, the disturbances are fed back to the front umbrella by this motion and become synchronized with the breakup. Droplet pinch-off is mainly in the short-wave mode, but some ligaments are elongated by local gas stretch to finally have a long-wave mode shape, namely a mode shift occurs. The above findings of liquid jet front umbrella formation, atomization at the umbrella edge, mixing and atomization loop in the recirculation flow region and droplet generation mode give an insight to the modeling of droplet generation in actual sprays. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据