4.6 Review

Formation of nascent soot and other condensed-phase materials in flames

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 33, 期 -, 页码 41-67

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2010.09.009

关键词

Soot; Nanoparticle; Flame; Kinetics; Energy

资金

  1. National Science Foundation [CBET 0651990]
  2. US Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001198]
  3. Chinese Ministry of Education

向作者/读者索取更多资源

Over the last two decades, our understanding of soot formation has evolved from an empirical, phenomenological description to an age of quantitative modeling for at least small fuel compounds. In this paper, we review the current state of knowledge of the fundamental sooting processes, including the chemistry of soot precursors, particle nucleation and mass/size growth. The discussion shows that though much progress has been made, critical gaps remain in many areas of our knowledge. We propose the roles of certain aromatic radicals resulting from localized p electron structures in particle nucleation and subsequent mass growth. The existence of these free radicals provides a rational explanation for the strong binding forces needed for forming initial clusters of polycyclic aromatic hydrocarbons. They may also explain a range of currently unexplained sooting phenomena, including the large amount of aliphatics observed in nascent soot formed in laminar premixed flames and the mass growth of soot in the absence of gas-phase H atoms. While the above suggestions are inspired, to an extent, by recent theoretical findings from the materials research community, this paper also demonstrates that the knowledge garnered through our longstanding interest in soot formation may well be carried over to flame synthesis of functional nanomaterials for clean and renewable energy applications. In particular, work on flame-synthesized thin films of nanocrystalline titania illustrates how our combustion knowledge might be useful for developing advanced yet inexpensive thin-film solar cells and chemical sensors for detecting gaseous air pollutants. (C) 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据