4.7 Article

New Players in the Toxin Field: Polymorphic Toxin Systems in Bacteria

期刊

MBIO
卷 6, 期 3, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/mBio.00285-15

关键词

-

资金

  1. La Fondation pour la Recherche Medicale
  2. l'INSERM
  3. le CNRS
  4. l'Universite Paris Descartes

向作者/读者索取更多资源

Bacteria have evolved numerous strategies to increase their competitiveness and fight against each other. Indeed, a large arsenal of antibacterial weapons is available in order to inhibit the proliferation of competitor cells. Polymorphic toxin systems (PTS), recently identified by bioinformatics in all major bacterial lineages, correspond to such a system primarily involved in conflict between related bacterial strains. They are typically composed of a secreted multidomain toxin, a protective immunity protein, and multiple cassettes encoding alternative toxic domains. The C-terminal domains of polymorphic toxins carry the toxic activity, whereas the N-terminal domains are related to the trafficking mode. In silico analysis of PTS identified over 150 distinct toxin domains, including putative nuclease, deaminase, or peptidase domains. Immunity genes found immediately downstream of the toxin genes encode small proteins that protect bacteria against their own toxins or against toxins secreted by neighboring cells. PTS encompass well-known colicins and pyocins, contact-dependent growth inhibition systems which include CdiA and Rhs toxins and some effectors of type VI secretion systems. We have recently characterized the MafB toxins, a new family of PTS deployed by pathogenic Neisseria spp. Many other putative PTS have been identified by in silico predictions but have yet to be characterized experimentally. However, the high number of these systems suggests that PTS have a fundamental role in bacterial biology that is likely to extend beyond interbacterial competition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据