4.0 Article

Single-molecule approaches to prion protein misfolding

期刊

PRION
卷 7, 期 2, 页码 140-146

出版社

TAYLOR & FRANCIS INC
DOI: 10.4161/pri.23303

关键词

single-molecule; fluorescence spectroscopy; force spectroscopy; optical tweezers; atomic force microscopy; aggregation; oligomerization; protein misfolding

资金

  1. PrioNet Canada
  2. Alberta Prion Research Institute
  3. Canadian Institute for Health Research
  4. nanoWorks program of Alberta Innovates

向作者/读者索取更多资源

The structural conversion of the prion protein PrP into a transmissible, misfolded form is the central element of prion disease, yet there is little consensus as to how it occurs. Key aspects of conversion into the diseased state remain unsettled, from details about the earliest stages of misfolding such as the involvement of partially-or fully-unfolded intermediates to the structure of the infectious state. Part of the difficulty in understanding the structural conversion arises from the complexity of the underlying energy landscapes. Single-molecule methods provide a powerful tool for probing complex folding pathways as in prion misfolding, because they allow rare and transient events to be observed directly. We discuss recent work applying single-molecule probes to study misfolding in prion proteins, and what it has revealed about the folding dynamics of PrP that may underlie its unique behavior. We also discuss single-molecule studies probing the interactions that stabilize non-native structures within aggregates, pointing the way to future work that may help identify the microscopic events triggering pathogenic conversion. Although single-molecule approaches to misfolding are relatively young, they have a promising future in prion science.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据