4.3 Article

Grazing incidence polarized neutron scattering in reflection geometry from nanolayered spintronic systems

期刊

PRAMANA-JOURNAL OF PHYSICS
卷 78, 期 1, 页码 1-58

出版社

INDIAN ACAD SCIENCES
DOI: 10.1007/s12043-011-0207-z

关键词

Neutron reflectometry; magnetization reversal mechanisms; magnetic properties of interfaces; magnetic multilayers

向作者/读者索取更多资源

This review summarizes recent experimental investigations using neutron scattering on layered nanomagnetic systems (accentuating my contribution), which have applications in spintronics also. Polarized neutron investigations of such artificially structured materials are basically done to understand the interplay between structure and magnetism confined within the nanometer scale that can be additionally depth-resolved. Details of the identification of buried domains and their nature of lateral and vertical correlations within the systems are important. A particularly interesting aspect that has emerged over the years is the capability to measure polarized neutron scattering in directions parallel and perpendicular to the applied field direction (which is also the quantization axis for neutron polarizations). This was added with the capability of measuring in specular as well as in off-specular geometry. Distorted wave Born approximation (DWBA) theory for neutrons has proved to be a remarkable development in the quantitative analysis of the scattering data measured simultaneously for specular and off-specular modes within the same framework. In particular, the depth and lateral distribution of the ferromagnetic spins relative to the interface within interlayer-coupled or exchange-coupled system has been extensive. For example, twisted magnetization state at interlayer coupled interfaces or intricacies of symmetric and asymmetric magnetization reversals along with suppression of training effect in exchange coupled system was microscopically identified using neutron scattering only. The investigation on the distribution of magnetic species within dilute ferromagnetic semiconductor superlattices, with low angle neutron scattering, has played a crucial role both from practical and fundamental research points of view.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据