4.7 Article

Numerical analysis of the dynamics of two- and three-dimensional fluidized bed reactors using an Euler-Lagrange approach

期刊

POWDER TECHNOLOGY
卷 220, 期 -, 页码 104-121

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2011.09.021

关键词

Fluidized bed; Euler-Lagrange; Three-dimensional simulation; Large-scale simulation; Bubble dynamics; Residence time

向作者/读者索取更多资源

Biomass thermochemical conversion, often done in fluidized beds, recently gained a lot of attention due to its potential to efficiently produce renewable liquid fuels. Optimization of reactor design and operating conditions, however, requires a fundamental understanding of bed dynamics. In this work, a numerical framework based on an Euler-Lagrange approach is developed and used to perform and analyze large-scale simulations of two- and three-dimensional periodic fluidized beds. Collisions are handled using a soft-sphere model. An efficient parallel implementation allows one to explicitly track over 30 million particles, which is representative of the number of particles found in lab-scale reactor. therefore demonstrating the capability of Lagrangian approaches to simulate realistic systems at that scale. An on-the-fly bubble identification and tracking algorithm is used to characterize bubble dynamics for inlet velocities up to 9 times the minimum fluidization velocity. Statistics for gas volume fraction, gas and particle velocities, bed expansion, and bubble size and velocity, is compared across the two- and three-dimensional configurations, and comparison with literature data generally shows good agreement. The wide distribution of gas residence times observed in the simulations is linked to the different gas hold-up characteristics of the gas-solid system. (c) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据