4.7 Article

Experimental validation of polyhedral discrete element model

期刊

POWDER TECHNOLOGY
卷 214, 期 3, 页码 431-442

出版社

ELSEVIER
DOI: 10.1016/j.powtec.2011.08.043

关键词

Non-spherical particle; DEM; Polyhedra; Computation; Granular materials; Hoppers

资金

  1. Engineering and Physical Sciences Research Council

向作者/读者索取更多资源

The flow of polyhedral granular particles in a small 3D slice hopper is studied experimentally and computationally by applying the discrete element method (DEM). A high speed camera was used to obtain the experimental results. The experimental packing structure, flow behaviour, arching and discharging in the hopper are analysed and compared with the DEM results for three hopper half angles. Reasonable agreement is shown on the static packing, flow behaviour and hopper discharge rates. The critical orifice length at which flow ceases to be smooth is investigated and arching of the material around the orifice is demonstrated experimentally and computationally. Spherical particles of nearly identical volume and density to the average of the polyhedral particles are also tested and compared to the polyhedra. The DEM is shown to be reasonably adept at modelling the interactions between polyhedral particles in a system in which there are very many possible particle geometrical interactions. Further work should consider the cohesion between the particles and the particle and the wall. Simulations of a greater number of particles in different hopper geometries should also be explored. (C) 2011 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据