4.7 Article Proceedings Paper

The effect of particle shape on simple shear flows

期刊

POWDER TECHNOLOGY
卷 179, 期 3, 页码 144-163

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.powtec.2007.06.018

关键词

shear cell; Coueue; DEM; shape; granular temperature; super-quadric

向作者/读者索取更多资源

Simple shear flows. (without gravity force and implemented using periodic boundary conditions or in Couette flow configurations with gravity) have been the subject of study using DEM simulation for more than two decades. Earlier studies explored the effect of attributes such as shear rate, particle size and domain scale on the distribution of the particles in the flow, velocity profiles and the stress distributions. These studies were conducted using simple shapes for the particles such as spheres. In recent years, the importance of particle shape on flow has been recognized in a range of industrial application including mixing, comminution, hopper discharge and chute flows. In this paper, we return to the simple shear flows and quantitatively explore the effect of particle shape on velocity, volume fraction, granular temperature and stress distributions across the channel. Particle shape is found to sharply increase the strength of the material making it stronger and harder to shear. The generation of particle spin throughout the flow of non-circular particles leads to high granular temperatures, dilative pressures and lower solid fractions in the core of the flow. For aspect ratios between 0.6 and 0.5, a transition in the effective behaviour of the wall boundary conditions is identified. The connections of shape to spin, to granular temperature, to bulk flow changes are elaborated. (c) 2007 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据