4.7 Article Proceedings Paper

Fluidization characteristics of aerogel Co/Al2O3 catalyst in a magnetic fluidized bed and its application to CH4-CO2 reforming

期刊

POWDER TECHNOLOGY
卷 183, 期 1, 页码 46-52

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.powtec.2007.11.015

关键词

CH4-CO2 reforming; Co/Al2O3 aerogel catalyst; fluidized bed; carbon deposition; magnetic fluidization

向作者/读者索取更多资源

The fluidization characteristics of a nanoparticle catalyst were investigated in a fluidized bed assisted with an axial magnetic field. It showed that slugging and channeling, commonly observed when processing nanoparticles via conventional fluidized bed reactors, could be effectively eliminated, and the size of the agglomerates and bubble diameter could also be reduced with the aid of the magnetic field, leading to much improved gas-solid contact efficiency. Due to the improved gas-solid contact efficiency, the performance of the CH4-CO2 catalytic reforming has been significantly enhanced, where the initial conversion of CH4 was 7.6% and 24.3% higher than those obtained in a conventional fluidized bed reactor and a fixed bed reactor. The catalytic deactivation, caused by carbon deposition on catalyst surfaces, is also slower in the magnetic fluidized bed operation, where the CH4 conversion is 11.7% and 42.6% greater as compared with those in the conventional fluidized bed operation and the fixed bed operation. The present investigations demonstrated that carbon deposition can be much suppressed through improving the gas-solid contact efficiency with the assistance of the magnetic field. (C) 2007 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据