4.2 Article

Simulating climate change: temperature extremes but not means diminish performance in a widespread butterfly

期刊

POPULATION ECOLOGY
卷 56, 期 1, 页码 239-250

出版社

WILEY
DOI: 10.1007/s10144-013-0409-y

关键词

Immune system; Insect; Life history; Pieris napi; Stress resistance

类别

向作者/读者索取更多资源

Climate-change induced shifts in species' temporal and geographic niches have been well documented, while plastic and genetic responses to climatic change have received much less attention. Plastic responses to changes in temperature are generally well understood, though most experimental studies to date have used constant temperature regimes, the reliability of which is under debate. We here investigate plastic responses in the widespread butterfly Pieris napi to simulated climate change, using ecologically realistic diurnal temperature cycles and current and predicted temperature regimes including effects of a heat wave. Increasing the temperature mean by 3 A degrees C predominantly affected developmental times, cold resistance and adult life span, while an increase in the diurnal temperature amplitude had very little effects. Immune function responded only weakly to different thermal regimes. The simulation of a prolonged heat wave severely impaired juvenile survival, body size and longevity, supporting the wide-held notion that extreme weather events will be much more important for species' performance and local survival than moderate increases in temperature means. Given that the frequency of extreme weather events is predicted to increase with climate change, even widespread species may be negatively affected.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据