4.5 Article

OCVD polymerization of PEDOT: effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns

期刊

POLYMERS FOR ADVANCED TECHNOLOGIES
卷 24, 期 2, 页码 210-219

出版社

WILEY-BLACKWELL
DOI: 10.1002/pat.3073

关键词

conductive fibers; oCVD; pre-treatment steps; PEDOT coating; surface morphology

资金

  1. Stiftelsen Svensk Textilforskning, Sweden

向作者/读者索取更多资源

The functionalization of textile fibers with intrinsically conductive polymers has become a prominent research area throughout the world. A number of coating techniques have already been utilized and optimized to get the uniform layers of conductive polymers on the surface of different substrates. In our previous study, we produced poly(3,4-ethylenedioxythiophene) (PEDOT)-coated conductive fibers by employing oxidative chemical vapor deposition (oCVD) technique. This paper describes the effects of pre-treatment steps, such as surface treatment of textile fibers with organic solvents, drying of oxidant-enriched fibers at variable temperatures and time, and oxidant type on the electrical, mechanical, and thermal properties of PEDOT-coated conductive fibers. Two well-known oxidants, ferric(III)chloride and ferric(III)p-toluenesulfonate (FepTS), were studied, and then their results were compared. In order to verify the PEDOT-coated layer and, to some extent, its impregnation inside the viscose yarns, a morphological study was carried out by using the attenuated total reflectance Fourier transform infrared spectroscopic imaging technique and computed tomography scanning across the obtained conductive fibers. Differential scanning calorimetric and thermogravimetric analysis were utilized to investigate the thermal properties and the contents of PEDOT in PEDOT-coated fibers. The mechanical properties of conductive fibers were evaluated by tensile strength testing of produced fibers. Effects of all of these pre-treatment steps on electrical properties were analyzed with Kiethly picoammeter. This study cannot only be exploited to improve the properties of conductive fibers but also to optimize the oCVD process for the production of conductive textile fibers by coating with different conjugated polymers. Copyright (c) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据