4.5 Article

Birefringence in injection-compression molding of amorphous polymers: Simulation and experiment

期刊

POLYMER ENGINEERING AND SCIENCE
卷 53, 期 8, 页码 1786-1808

出版社

WILEY
DOI: 10.1002/pen.23429

关键词

-

资金

  1. NSF Division of Engineering [DMI-0322920]

向作者/读者索取更多资源

The influence of the processing variables on the residual birefringence was analyzed for polystyrene and polycarbonate disks obtained by injection-compression molding under various processing conditions. The processing variables studied were melt and mold temperatures, compression stroke, and switchover time. The modeling of flow-induced residual stresses and birefringence of amorphous polymers in injection-compression molded center-gated disks was carried out using a numerical scheme based on a hybrid finite element/finite difference/control volume method. A nonlinear viscoelastic constitutive equation and stress-optical rule were used to model frozen-in flow stresses in moldings. The filling, compression, packing, and cooling stages were considered. Thermally-induced residual birefringence was calculated using the linear viscoelastic and photoviscoelastic constitutive equations combined with the first-order rate equation for volume relaxation and the master curves for the Young's relaxation modulus and strain-optical coefficient functions. The residual birefringence in injection-compression moldings was measured. The effects of various processing conditions on the measured and simulated birefringence distribution n and average transverse birefringence were elucidated. Comparison of the birefringence in disks manufactured by the injection molding and injection-compression molding was made. The predicted and measured birefringence is found to be in fair agreement. POLYM. ENG. SCI., 2013. (c) 2013 Society of Plastics Engineers

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据