4.7 Article

Long-term performance of a polyamide-12-based fuel line with a thin poly(ethylene-co-tetrafluoroethylene) (ETFE) inner layer exposed to bio- and petroleum diesel

期刊

POLYMER DEGRADATION AND STABILITY
卷 156, 期 -, 页码 170-179

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2018.09.003

关键词

Polyamide; Poly(ethylene-co-tetrafluoroethylene); Fuel pipe; Diesel; Biodiesel; Ageing; Plasticizer loss

资金

  1. Swedish Energy Authority [32519-3]
  2. Volvo Cars AB (Goteborg, Sweden)
  3. Scania CV AB (Sodertalje, Sweden)

向作者/读者索取更多资源

The long-term performance of a polyamide-12 (PA12)-based (bio)diesel fuel line/pipe with a thin poly(ethylene-co-tetrafluoroethylene) (ETFE) inner layer was investigated in close to real and high-temperature isothermal conditions with fuel on the inside and air on the outside of the pipe. The inner carbon-black-containing ETFE layer resisted fuel attack, as revealed by the small fuel uptake, the very low degree of oxidation, and the unchanged electrical conductivity, glass transition and melting behaviour. The properties of the ETFE layer remained the same after exposure to all the fuel types tested (petroleum diesel, biodiesel and a blend of 80% diesel with 20% biodiesel). Because of the presence of the ETFE layer on the inside, the fuel pipe experienced noticeable changes only in the outer PA12 pipe layer through migration of plasticizer, annealing and slight oxidation. The evaporation of plasticizer was found to be diffusion-controlled and it led to an increase in the glass transition temperature of PA12 by 20 degrees C. This, together with a small annealing-induced increase in crystallinity, resulted in a stiffer and stronger pipe with an increase in the flexural/tensile modulus and strength. The oxidation of PA12 remained at a low level and did not lead to an embrittled pipe during the simulated lifetime of the vehicle. This study reveals that fluoropolymers have a great potential for use as fuel-contacting materials in demanding motor vehicle fuel line systems. (C) 2018 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据