4.7 Article

Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites

期刊

POLYMER DEGRADATION AND STABILITY
卷 94, 期 5, 页码 751-756

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2009.02.010

关键词

Ethylene-vinyl acetate copolymer; Multiwalled carbon nanotubes; Magnesium hydroxide; Synergistic effect; Halogen-free flame retardant

向作者/读者索取更多资源

The synergistic effects and mechanism of multiwalled carbon nanotubes (MWNTs) with magnesium hydroxide (MH) in halogen-free flame retardant EVA/MH/MWNT nanocomposites have been studied by cone calorimeter test (CCT), limiting oxygen index (LOI), thermogravimetric analysis (TGA), torque test, morphological evolution experiment, and scanning electron microscopy (SEM). The data obtained from the CCT, LOI, and TGA show that suitable amount of MWNTs has synergistic effects with MH in the EVA/MH/MWNT nanocomposites. The MWNTs can considerably decrease the heat release rates and mass loss rate by about 50-60%, prolongate the combustion time to near two times, and increase the LOI values by 5% when 2 wt% MWNTs substitute for the MH in the EVA/MH/MWNT samples. The TGA data also show that the synergistic effects of MWNTs with MH apparently increase the thermal degradation temperatures and final charred residues of the EVA/MH/MWNT samples. The experimental observations from the torque, morphological evolution tests, and SEM give positive evidences that the synergistic mechanism of MWNTs with MH can be described to: (i) the increase of melt viscosity because of network structure formation of MWNTs in the EVA/MH matrix; (ii) the enhancement of thermo-oxidation stability due to the MWNTs' mechanical strength and integrity of the charred layers in the EVA/MH/MWNT nanocomposites; (iii) the formation of compact charred layers promoted by MWNTs acted as heat barrier and thermal insulation. All the above-mentioned factors efficiently enhance thermal and flame retardant properties and protect the EVA/MH/MWNT nanocomposite materials to be burning. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据