4.7 Article

Thermal response to fire of a fibre-reinforced sandwich panel: Model formulation, selection of intrinsic properties and experimental validation

期刊

POLYMER DEGRADATION AND STABILITY
卷 94, 期 8, 页码 1267-1280

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymdegradstab.2009.04.007

关键词

Glass reinforced plastics; Sandwich panels; Mathematical modelling; Fire response

向作者/读者索取更多资源

A predictive model is formulated for the fire response of a glass reinforced plastic panel, consisting of two glass-fibre/polyester skins and Vermiculux sandwich material (core) in between. Polymer conversion takes place according to a first-order decomposition reaction and an n-order combustion reaction both with an Arrhenius-type dependence on temperature. Intrinsic kinetic parameters have been estimated by re-examination of thermogravimetric data at four heating rates, resulting in activation energies for the two steps of 128 and 150 kJ/mol, respectively. Physical processes are modelled by the unsteady, one-dimensional conservation equations taking into account heat transfer by convection and conduction, convective mass transfer, surface heat transfer, effective thermal conductivity, moisture evaporation, ablation of the heat-exposed surface at a critical temperature and property variation. Simulated process dynamics, using intrinsic values for all the model parameters, are highly influenced by the behaviour of the heat-exposed skin which shows three main regimes: I) very rapid conversion of a thin surface layer (fast heating regime), II) slowing down of the conversion processes following the formation of a thick insulating fibre glass layer (slow heating regime) and III) a new enhancement in the reaction rates as a consequence of surface collapse and ablation (ablation regime). Good agreement is obtained for the predicted and measured temperatures for both a single skin composite plate and a sandwich panel loaded with a hydrocarbon flame. (C) 2009 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据