4.7 Article

Functionalization of graphene with grafted polyphosphamide for flame retardant epoxy composites: synthesis, flammability and mechanism

期刊

POLYMER CHEMISTRY
卷 5, 期 4, 页码 1145-1154

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3py00963g

关键词

-

资金

  1. National Basic Research Program of China (973 Program) [2014CB931804]
  2. National Natural Science Foundation of China (NSFC) [61079015]
  3. Civil Aviation Administration of China (CAAC) [61079015]
  4. Specialized Research Fund for the Doctoral Program of Higher Education [20103402110006]

向作者/读者索取更多资源

A polyphosphamide (PPA) was synthesized and covalently grafted onto the surface of graphene nanosheets (GNSs) to obtain a novel flame retardant, PPA-g-GNS, and subsequently PPA-g-GNS was incorporated into epoxy resins (EPs) to enhance the fire resistance. The chemical structures and morphology of the precursors and target product were confirmed using H-1-NMR spectroscopy, Fourier transform infrared spectroscopy and atomic force microscopy. The tensile results showed that the mechanical strength and modulus of the PPA-g-GNS/EP composite were higher than those of pure EP and PPA/EP, owing to the outstanding reinforced effect of graphene. The evaluation of the thermal properties demonstrated that the addition of PPA or PPA-g-GNS to epoxy had a thermal destabilization effect below 400 degrees C, but led to a higher char yield at higher temperatures. Furthermore, the PPA-g-GNS/EP composite exhibited superior fire resistant performance, such as higher LOI values and reduced PHRR and FIGRA values, compared to pure EP and PPA/EP, which was probably attributed to the higher char yield during combustion. A possible flame retardant mechanism was speculated according to the direct pyrolysis-mass spectrometry results: the phosphate species degraded from PPA catalyzed the decomposition of the PPA-g-GNS/EP composites to generate various pyrolysis products; the pyrolysis products were absorbed and propagated on the graphene which served as a template of micro-char, and thus a continuous and compact char layer was formed; such a char layer provided effective shields to protect the underlying polymers against flame.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据