4.7 Article

A highly efficient macromonomer approach to core cross-linked star (CCS) polymers via one-step RAFT emulsion polymerization

期刊

POLYMER CHEMISTRY
卷 5, 期 14, 页码 4277-4284

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4py00135d

关键词

-

资金

  1. National Natural Science Foundation of China [21274084]
  2. Shanghai Leading Academic Disciplines [S30109]

向作者/读者索取更多资源

We have developed a highly efficient, one-step approach for the synthesis of core cross-linked star (CCS) polymers using commercial macromonomers (polyethylene glycol methyl ether methacrylates) as the arms via RAFT-mediated emulsion polymerization in aqueous media. This approach employs a small molecular chain transfer agent (CTA), commercial macromonomer, hydrophobic cross-linker, and optional hydrophobic spacing monomer as the polymerization recipe to synthesize CCS polymers via direct one-step polymerization in aqueous buffer solution. Various polymerization parameters, including buffer concentration and molar ratio of macromonomer/cross-linker/spacing monomer relative to CTA, were investigated. CCS polymers of high yield and low dispersity were obtained within 4 h under a wide range of conditions. Analysis of polymerization kinetics and macromolecular parameters of the generated polymeric species during the polymerization process led to insights into the mechanistic aspects of the CCS formation process, which was proposed to involve three stages, i.e., polymer chain growth, crosslinking to form CCS, and CCS growth. Finally, synthesis of CCS polymers using macromonomers of different molecular weights pointed to the necessity for optimization of the polymerization conditions for each macromonomer, possibly due to different polymerization rates and steric hindrance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据