4.7 Article

Bioinspired phospholipid polymer prodrug as a pH-responsive drug delivery system for cancer therapy

期刊

POLYMER CHEMISTRY
卷 4, 期 6, 页码 2004-2010

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2py20981k

关键词

-

资金

  1. National Natural Science Foundation of China [50830106, 21174126]
  2. China National Funds for Distinguished Young Scientists [51025312]
  3. National Basic Research Program of China [2011CB606203]
  4. Open Project of State Key Laboratory of Supramolecular Structure and Materials [sklssm201316]
  5. Research Fund for the Doctoral Program of Higher Education of China [20110101110037]

向作者/读者索取更多资源

Efficient delivery systems should be stable in blood circulation, with efficient cellular uptake and rapid drug release in cancer cells. Herein, we synthesized P(2-(methacryloyloxy)-ethyl phosphorylcholine)-b-P(2-methoxy-2-oxoethyl methacrylate) via atom transfer radical polymerization. Doxorubicin (DOX) was linked to the polymer via a pH-responsive hydrazone bond. The polymer prodrug had high DOX content (10.6 wt%) and was able to self-assemble to form core-shell structured micelles. Dynamic light scattering showed that the average size of the micelles was 142.3 nm, which is the ideal size for the enhanced permeability and retention (EPR) effect. The shell of the micelles was composed of phosphorylcholine, which imitated the structure of cell membranes. Studies of intracellular uptake demonstrated that the prodrug micelles were internalized effectively by cancer cells. An in vitro release study indicated that the release of DOX at pH 5.0 was much faster than that at pH 7.4. Moreover, in vitro cytotoxicity showed that this polymer prodrug inhibited the growth of cancer cells remarkably, demonstrating its potential for use as an efficient drug delivery system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据