4.7 Article

Effects of structure-manipulated molecular stacking on solid-state optical properties and device performances

期刊

POLYMER CHEMISTRY
卷 3, 期 10, 页码 2832-2841

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2py20406a

关键词

-

资金

  1. NSFC [20973182]
  2. Chinese Academy of Sciences, Project 973 [2011CB808400]
  3. Chinese Academy of Sciences, Project 863 [2009AA03Z323]
  4. CAS/SAFEA International Partnership Program for Creative Research Teams

向作者/读者索取更多资源

Four conjugated copolymers with phthalimide (PhI) or thieno[3,4-c]pyrrole-4,6-dione (TPD) as the acceptor, thiophene (T) or selenophene (Se) as the spacer and 3,3'-didodecyl-2,2'-bithiophene (BT) as the common donor, namely, PPhI-T, PPhI-Se, PTPD-T and PTPD-Se, have been synthesized and the effects of intra- and intermolecular interactions on the optical properties, molecular stacking, and organic electronic device performances were investigated. The intramolecular S(Se)center dot center dot center dot O (carbonyl) interactions between the spacer and the PhI's or TPD's carbonyl and the intermolecular reciprocity between the polymeric backbones differ from each other as the spacer and the acceptor were varied. Among the four polymers, PPhI-T with the weakest intramolecular S center dot center dot center dot O interaction and intermolecular backbone reciprocity exhibited the poorest photovoltaic performance with a PCE of 0.31%. When the T spacer was replaced by the more polarized Se spacer, the resultant copolymer PPhI-Se exhibited stronger intra- and intermolecular interactions, resulting in better optical properties with a PCE of 0.94% when blended with PC71BM. When PhI is replaced with the more polarized TPD unit, the TPD-based polymers, PTPD-T and PTPD-Se, showed even better coplanarity compared to that of the PhI-based polymers, with a PCE of 2.04% for PTPD-T and 1.52% for PTPD-Se blended with PC71BM. To the best of our knowledge, this is the first systematic study on the influences of structure-manipulated molecular stacking on solid-state optical properties and electronic device performance through modulations of the intramolecular and intermolecular interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据