4.7 Article

Effects of Mn and Al contents on cryogenic-temperature tensile and Charpy impact properties in four austenitic high-Mn steels

期刊

ACTA MATERIALIA
卷 100, 期 -, 页码 39-52

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2015.08.027

关键词

Austenitic high-Mn steels; Tensile properties; Charpy impact properties; Cryogenic temperature; Martensitic transformation

资金

  1. Ministry of Knowledge Economy - South Korea [10044574-2013-45]

向作者/读者索取更多资源

Effects of Mn (19 and 22 wt.%) and Al (0 and 2 wt.%) contents on tensile and Charpy impact properties in four austenitic high-Mn steels were investigated at room and cryogenic temperatures. The cryogenictemperature tensile test results indicated that the yield strength was higher in the Al-added steels than non-Al-added steels, which could be explained by a stress-induced martensitic transformation in the non-Al-added steels. The reduction in ductility was largest in the 19Mn steel, where the transformations to epsilon- and alpha'-martensites occurred and their fraction was highest. Charpy impact energies of the 19Mn and 22Mn steels rapidly dropped with decreasing temperature, whereas those of the 19Mn2Al and 22Mn2Al steels slowly decreased. According to the EBSD analysis data of the cryogenic-temperature Charpy impact specimen, the transformation to epsilon- and alpha'-martensites readily occurred in the 19Mn and 22Mn steels, which resulted in the large reduction in impact energy. In the 19Mn2Al steel composed of highly stable austenite, the time needed for sufficient deformation to trigger the martensitic transformation was very short under the impact testing condition. In the Al-added steels, any martensites were not found, while many deformation twins were formed, thereby leading to high Charpy impact energy. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据