4.7 Article

Optimization and simplification of polymer-fullerene solar cells through polymer and active layer design

期刊

POLYMER
卷 54, 期 20, 页码 5267-5298

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2013.07.053

关键词

Conjugated polymer; Solar cell; Fullerene

资金

  1. Center for Energy Nanoscience, an Energy Frontier Research Center
  2. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-SC0001013]

向作者/读者索取更多资源

Polymer-fullerene bulk heterojunction (BHJ) solar cells have consistently been at the forefront of the growing field of organic photovoltaics (OPV). The enduring vision of OPV is the promise of combining a simple, low-cost approach with an efficient, flexible, lightweight platform. While efficiencies have improved remarkably over the last decade through advances in device design, mechanistic understanding, and evolving chemical structural motifs, steps forward have often been tied to a loss of simplicity and a deviation from the central vision of OPV. Within the context of active layer optimization, our focus is to target high efficiency while maintaining simplicity in polymer design and active layer processing. To highlight this strategy, this feature article focuses on our work on random poly(3-hexylthiophene) (P3HT) analogs and their application in binary and ternary blend polymer-fullerene solar cells. These random conjugated polymers are conceptually based on combining simple monomers strategically to influence polymer properties as opposed to the synthesis of highly tailored and synthetically complex monomers. The ternary blend approach further exemplifies the focus on device simplicity by targeting efficiencies that are competitive with complex tandem solar cells, but within the confines of a single active-layer processing step. These research directions are described within the broader context of recent progress in the field of polymer-fullerene BHJ solar cells. (c) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据