4.7 Article

Elaboration and properties of plasticised chitosan-based exfoliated nano-biocomposites

期刊

POLYMER
卷 54, 期 14, 页码 3654-3662

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2013.05.017

关键词

Chitosan; Nano-biocomposite; Montmorillonite

资金

  1. Australian Academy of Science
  2. University of Queensland

向作者/读者索取更多资源

A series of plasticised chitosan-based materials and nanocomposites were successfully prepared by thermomechanical kneading. During the processing, the montmorillonite (MMT) platelets were fully delaminated. The nanoclay type and content and the preparation method were seen to have an impact on the crystallinity, morphology, glass transition temperature, and mechanical properties of the samples. When higher content (5%) of MMT-Na+ or either content (2.5% or 5%) of chitosan-organomodified MMT (OMMT-Ch) was used, increases in crystallinity and glass transition temperature were observed. Compared to the neat chitosan, the plasticised chitosan-based nano-biocomposites showed drastically improved mechanical properties, which can be ascribed to the excellent dispersion and exfoliation of nanoclay and the strong affinity between the nanoclay and the chitosan matrix. The best mechanical properties obtained were Young's modulus of 164.3 MPa, tensile strength of 13.9 MPa, elongation at break of 62.1%, and energy at break of 0.671 MPa. While the degree of biodegradation was obviously increased by the presence of glycerol, a further increase might be observed especially by the addition of unmodified nanoclay. This could surprisingly contribute to full (100%) biodegradation after 160 days despite the well-known antimicrobial property of chitosan. The results in this study demonstrate the great potential of plasticised chitosan-based nano-biocomposites in applications such as e.g., biodegradable packaging materials. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据