4.7 Article

Effect of lower critical solution temperature phase separation on crystallization kinetics and morphology of poly(butylenes succinate)/poly(ethylene oxide) blend

期刊

POLYMER
卷 54, 期 9, 页码 2355-2363

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2013.02.020

关键词

Poly(butylenes succinate)/poly(ethylene oxide) blends; Lower critical solution temperature phase separation; Crystallization

资金

  1. National Natural Science Foundation of China [50930003, 21004070]
  2. Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry [1561]

向作者/读者索取更多资源

The crystalline/crystalline polymer blend of poly(butylenes succinate)/poly(ethylene oxide) (PBS/PEO) exhibited lower critical solution temperature (LCST) phase separation behavior at temperatures above the melting point of PBS, which was measured by phase contrast optical microscopy (PCOM) technique. In this work, we determined the LCST phase diagram of PBS/PEO blends, and then investigated the effect of liquid liquid phase separation (LLPS) on the crystallization kinetics and morphologies of PBS/PEO (40/60 wt/wt) blend. Based on polarized optical microscopy (POM), scanning electron microscopy (SEM) and differential scanning calorimeter (DSC) results, we found that the spherulite morphology and crystallization kinetics of PBS were strongly influenced by the initial LLPS structure; because the kinetics of liquid liquid phase dissolution was much slower than that of crystallization. The effect of LLPS on the primary nucleation density and crystal growth rate of PBS were strongly dependent on the crystallization temperature of PBS. After a second quench to a temperature below the melting point of PEO, the fractionated crystallization of PEO was observed. The competition between the kinetics of LLPS and the driving force of PBS crystallization controlled the spatial distribution of PEO in PBS spherulites, thus essentially determined the confined conditions of the PEO crystallization. The results indicated that the LLPS was an effective process to control the crystallization kinetics and morphology in crystalline/crystalline polymer blend systems. (C) 2013 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据