4.7 Article

Multiscale homogenization modeling for thermal transport properties of polymer nanocomposites with Kapitza thermal resistance

期刊

POLYMER
卷 54, 期 5, 页码 1543-1554

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2013.01.020

关键词

Kapitza thermal resistance; Polymer nanocomposites; Multiscale homogenization

资金

  1. National Research Foundation of Korea (NRF)
  2. Korea government (MEST) [2012R1A3A2048841]
  3. Seed Collaborative RD Program
  4. Korean Research Council of Fundamental Science and Technology (KRCF), Republic of Korea
  5. National Research Council of Science & Technology (NST), Republic of Korea [KRCF-협동-1326] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)
  6. National Research Foundation of Korea [2012R1A3A2048841, R31-2012-000-10083-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this study, multiscale homogenization modeling to characterize the thermal conductivity of polymer nanocomposites is proposed to account for the Kapitza thermal resistance at the interface and the polymer immobilized interphase. Molecular dynamics simulations revealed that the thermal conductivity dependent on the embedded particle size originated from the structurally altered interphase zone of surrounding matrix polymer in the vicinity of nanoparticles, and clearly indicate strong dominance of interfacial phonon scattering and dispersion. To account for both the thermal resistance and the immobilized interphase, a four-phase equivalent continuum model composed of spherical nanoparticles, Kapitza thermal interface, effective interphase, and bulk matrix phase is introduced in a finite element-based homogenization method. From the given thermal conductivity of the nanocomposites obtained from MD simulations, the thermal conductivity of the interphase is inversely and numerically obtained. Compared with the micromechanics-based multiscale model, the thermal conductivity of the interphase can be obtained more accurately from the proposed homogenization method. Using the thermal conductivity of the interphase, the random distribution and radius of nanoparticles to describe real nanocomposite microstructure are considered, and the results confirm the applicability of the proposed multiscale homogenization model for further stochastic approaches to account for geometric uncertainties in nanocomposites.(C) 2013 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据