4.7 Article

Hydrophilic monolith with ethylene glycol-based grafts prepared via surface confined thiol-ene click photoaddition

期刊

POLYMER
卷 53, 期 1, 页码 29-36

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2011.11.014

关键词

Click photoaddition; Hydrophilic surface; Monolith

资金

  1. EGIDE [25553RF]

向作者/读者索取更多资源

Macroporous polymeric monolith bearing thiol-reactive surface functionalities was prepared within micrometer-sized fused silica capillary column by photochemically-driven free radical copolymerization of N-acryloxysuccininimide and ethylene dimethacrylate in the presence of toluene as porogenic solvent, hereafter poly(NAS-co-EDMA), and subsequent surface grafting of allylamine through nucleophilic substitution reaction. The pore surface with pendant allyl moieties was further functionalized via a two-step thiol-ene click reaction with thiol-containing oligo(ethylene glycol) and mercaptoethanol, successively. The surface hydration ability, i.e. hydrophilic character, of the as-obtained monolith was evaluated as a function of the water-content of the liquid fluid environment through electrochromatographic evaluation of the retention properties of the -(O-CH2-CH2)-like surface-functionalized capillary monolith. A major result was that the so called hydrophilic interaction electrochromatographic mode was observed at a given mobile phase composition. An example is given for the separation of phenol-derivatives, with the most hydrophilic one being the most retained. In addition, the hydrophilic interaction based separation allowed for reduced analysis time as compared to the separation observed under reversed-phase separation mode using analogous monolithic stationary phase. Finally, the versatility of the thiol-ene photoaddition approach is demonstrated with an example of C18-like monolith for reversed-phase separation application. (O) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据