4.7 Article

Effect of confinement on the relaxation behavior of poly(ethylene oxide)

期刊

POLYMER
卷 51, 期 8, 页码 1820-1829

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.polymer.2010.02.016

关键词

Nanolayers; Relaxation behavior; Glass transition

资金

  1. NSF [DMR-0423914]

向作者/读者索取更多资源

It is widely thought that confinement of an amorphous polymer alters the chain mobility, which affects the temperature and intensity of the glass transition. The present study sought to determine whether the same effects extend to semicrystalline polymers. Confinement was achieved by forced assembly of hundreds of alternating layers of poly(ethylene oxide) (PEO) with either poly(ethylene-co-acrylic acid) or polystyrene. The confinement gradually reduced the intensity of the PEO beta-relaxation as the layer thickness decreased from the microscale to the nanoscale. By considering the changes in crystalline morphology that accompanied layer confinement, it was possible to completely account for the reduction in relaxation intensity using standard mechanical models. The viscoelastic behavior of the amorphous phase was satisfactorily represented by a modified standard linear solid (SLS). The amorphous and crystalline contributions were combined using a combination of parallel and series coupling in accordance with the Takayanagi model. No adjustment in the viscoelastic parameters of the modified SLS was required, indicating that there was no significant change in amorphous chain dynamics even in layers as thin as 45 nm. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据