4.4 Article

A vital role for Angptl3 in the PAN-induced podocyte loss by affecting detachment and apoptosis in vitro

期刊

BMC NEPHROLOGY
卷 16, 期 -, 页码 -

出版社

BMC
DOI: 10.1186/s12882-015-0034-4

关键词

Angptl3; Podocyte loss; F-actin rearrangement; Detachment; Apoptosis

资金

  1. National Natural Science Foundation of China [81370814]
  2. Fudan University Outstanding Doctoral Research Fund [20130071120089]
  3. Shanghai Committee of Science and Technology [134119a7700]

向作者/读者索取更多资源

Background: Podocyte detachment and apoptosis are two risk factors causing podocyte loss, F-actin rearrangement is involved in detachment and apoptosis. However, the nature of events that promote detachment and apoptosis of podocytes and whether detachment occurred simultaneously with apoptosis are still unclear. Previously, it was found that angiopoietin-like3 (Angptl3) induces F-actin rearrangement in podocytes. In this study we investigate whether Angptl3 influences podocyte loss (detachment and apoptosis) and the process through which Angptl3 exactly influenced the podocyte loss. Methods: In conditionally immortalized mice podocytes, recombinant mice Angptl3 protein (rm-Angptl3) was used to mimic Angptl3 overexpression model and transfection with small interfering RNA (siRNA) to knockdown the expression of Angptl3. Both flow cytometry analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay were used to detect apoptosis. Rearrangement of F-actin was assessed using confocal microscopy. Western blot assay was used to measure levels of Angptl3, integrin alpha 3 beta 1, integrin-linked kinase (ILK), p53, caspase 3, and phosphorylation of integrin beta 1. Results: In a puromycin aminonucleoside (PAN)-induced podocyte injury model, rm-Angptl3 accelerated the loss of podocytes, both detachment and apoptosis occurred, and F-actin rearrangement is involved in the process. However, knockdown of Angptl3 by siRNA markedly ameliorated these injuries. Observed effects were partially correlated with the altered integrin alpha 3 beta 1, ILK and p53, rather than caspase 3. Conclusions: Angptl3 is a novel factor involved in the PAN-induced podocyte loss by affecting detachment and apoptosis in vitro. This study helps to deepen the understanding of the mechanisms of podocyte loss and lays the foundation for developing a new successful therapy for podocyte injury via lower expression of Angptl3.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据