4.6 Article

Differentiation of human iPSCs into functional podocytes

期刊

PLOS ONE
卷 13, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0203869

关键词

-

资金

  1. Innovative Medicines Initiative Joint Undertaking, European Union Seventh Framework Programme (FP7/2007-2013) [115439]
  2. EFPIA companies
  3. Foundation ProCare, Zurich, Switzerland
  4. Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
  5. in3 Marie Sklodowska-Curie Action - Innovative Training Network [721975]
  6. Boehringer Ingelheim Pharma GmbH Co. KG

向作者/读者索取更多资源

Podocytes play a critical role in glomerular barrier function, both in health and disease. However, in vivo terminally differentiated podocytes are difficult to be maintained in in vitro culture. Induced pluripotent stem cells (iPSCs) offer the unique possibility for directed differentiation into mature podocytes. The current differentiation protocol to generate iPSC-derived podocyte-like cells provides a robust and reproducible method to obtain podocytelike cells after 10 days that can be employed in in vitro research and biomedical engineering. Previous published protocols were improved by testing varying differentiation media, growth factors, seeding densities, and time course conditions. Modifications were made to optimize and simplify the one-step differentiation procedure. In contrast to earlier protocols, adherent cells for differentiation were used, the use of fetal bovine serum (FBS) was reduced to a minimum, and thus B-mercaptoethanol could be omitted. The plating densities of iPSC stocks as well as the seeding densities for differentiation cultures turned out to be a crucial parameter for differentiation results. Conditionally immortalized human podocytes served as reference controls. iPSC-derived podocyte-like cells showed a typical podocyte-specific morphology and distinct expression of podocyte markers synaptopodin, podocin, nephrin and WT-1 after 10 days of differentiation as assessed by immunofluorescence staining or Western blot analysis. qPCR results showed a downregulation of pluripotency markers Oct4 and Sox-2 and a 9-fold upregulation of the podocyte marker synaptopodin during the time course of differentiation. Cultured podocytes exhibited endocytotic uptake of albumin. In toxicological assays, matured podocytes clearly responded to doxorubicin (Adriamycin (TM)) with morphological alterations and a reduction in cell viability after 48 h of incubation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据