4.6 Article

Exogenous C-type natriuretic peptide restores normal growth and prevents early growth plate closure in its deficient rats

期刊

PLOS ONE
卷 13, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0204172

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan [21591176, 17K09881]
  2. Uehara Memorial Foundation
  3. Asubio Pharma Co., Ltd.
  4. Grants-in-Aid for Scientific Research [17K09881, 21591176] Funding Source: KAKEN

向作者/读者索取更多资源

Signaling by C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B, is a pivotal stimulator of endochondral bone growth. We recently developed CNP knockout (KO) rats that exhibit impaired skeletal growth with early growth plate closure. In the current study, we further characterized the phenotype and growth plate morphology in CNP-KO rats, and the effects of exogenous CNP in rats. We used CNP-53, an endogenous form of CNP consisting of 53 amino acids, and administered it for four weeks by continuous subcutaneous infusion at 0.15 or 0.5 mg/kg/day to four-week old CNP-KO and littermate wild type (WT) rats. We demonstrated that CNP-KO rats were useful as a reproducible animal model for skeletal dysplasia, due to their impairment in endochondral bone growth. There was no significant difference in plasma bone-turnover markers between the CNP-KO and WT rats. At eight weeks of age, growth plate closure was observed in the distal end of the tibia and the calcaneus of CNP-KO rats. Continuous subcutaneous infusion of CNP-53 significantly, and in a dose-dependent manner, stimulated skeletal growth in CNP-KO and WT rats, with CNP-KO rats being more sensitive to the treatment. CNP-53 also normalized the length of long bones and the growth plate thickness, and prevented growth plate closure in the CNP-KO rats. Using organ culture experiment of fetal rat tibia, gene set enrichment analysis indicated that CNP might have a negative influence on mitogen activated protein kinase signaling cascades in chondrocyte. Our results indicated that CNP-KO rats might be a valuable animal model for investigating growth plate physiology and the mechanism of growth plate closure, and that CNP-53, or its analog, may have the potential to promote growth and to prevent early growth plate closure in the short stature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据