4.6 Article

Effects of a compound from the group of substituted thiadiazines with hypothermia inducing properties on brain metabolism in rats, a study in vivo and in vitro

期刊

PLOS ONE
卷 12, 期 7, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0180739

关键词

-

资金

  1. Russian Science Foundation [14-14-00221]
  2. Russian Science Foundation [14-14-00221] Funding Source: Russian Science Foundation

向作者/读者索取更多资源

The aim of the present study was to examine how administration of a compound of 1,3,4-thiadiazine class 2-morpholino-5-phenyl-6H-1,3,4-thiadiazine, hydrobromide (L-17) with hypothermia inducing properties affects the brain metabolism. The mechanism by which L-17 induces hypothermia is unknown; it may involve hypothalamic central thermoregulation as well as act via inhibition of energy metabolism. We tested the hypothesis that L-17 may induce hypothermia by directly inhibiting energy metabolism. The study in vivo was carried out on Sprague-Dawley adult rats. Two doses of L-17 were administered (190 mg/kg and 760 mg/kg). Brain metabolites were analyzed in control and treated groups using magnetic resonance spectroscopy, along with blood flow rate measurements in carotid arteries and body temperature measurements. Further in vitro studies on primary cultures from rat hippocampus were carried out to perform a mitochondria function test of L-17 preincubation (100 mu M, 30 min). Analysis of brain metabolites showed no significant changes in 190 mg/kg treated group along with a significant reduction in body temperature by 1.5 degrees C. However, administration of L-17 in higher dose 760 mg/kg provoked changes in brain metabolites indicative of neurotoxicity as well as reduction in carotid arteries flow rate. In addition, a balance change of excitatory and inhibitory neurotransmitters was observed. The L-17 pre-incubation with cell primary cultures from rat brain showed no significant changes in mitochondrial function. The results obtained in the study indicate that acute administration of L-17 190 mg/kg in rats induces mild hypothermia with no adverse effects onto brain metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据