4.6 Article

Brain MR image segmentation based on an improved active contour model

期刊

PLOS ONE
卷 12, 期 8, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0183943

关键词

-

资金

  1. National Nature Science Foundation of China [61672291]

向作者/读者索取更多资源

It is often a difficult task to accurately segment brain magnetic resonance (MR) images with intensity in-homogeneity and noise. This paper introduces a novel level set method for simultaneous brain MR image segmentation and intensity inhomogeneity correction. To reduce the effect of noise, novel anisotropic spatial information, which can preserve more details of edges and corners, is proposed by incorporating the inner relationships among the neighbor pixels. Then the proposed energy function uses the multivariate Student's t-distribution to fit the distribution of the intensities of each tissue. Furthermore, the proposed model utilizes Hidden Markov random fields to model the spatial correlation between neighboring pixels/voxels. The means of the multivariate Student's t-distribution can be adaptively estimated by multiplying a bias field to reduce the effect of intensity inhomogeneity. In the end, we reconstructed the energy function to be convex and calculated it by using the Split Bregman method, which allows our framework for random initialization, thereby allowing fully automated applications. Our method can obtain the final result in less than 1 second for 2D image with size 256 x 256 and less than 300 seconds for 3D image with size 256 x 256 x 171. The proposed method was compared to other state-of-the-art segmentation methods using both synthetic and clinical brain MR images and increased the accuracies of the results more than 3%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据