4.6 Article

Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations

期刊

PLOS ONE
卷 12, 期 4, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0175675

关键词

-

资金

  1. United States Department of Agriculture-Agricultural Research Service [6026-51000-010-05S]
  2. National Institute of Diabetes and Digestive and Kidney Diseases [R01-DK-084225]
  3. NIH-CTSA program [UL1-TR-000039, KL2-TR-000063]

向作者/读者索取更多资源

Objective Non-alcoholic fatty liver disease (NAFLD) is an important co-morbidity associated with obesity and a precursor to steatohepatitis. However, the contributions of gestational and early life influences on development of NAFLD and NASH remain poorly appreciated. Methods Two independent studies were performed to examine whether maternal over-nutrition via exposure to high fat diet (HFD) leads to exacerbated hepatic responses to post-natal HFD and methionine choline deficient (MCD) diets in the offspring. Offspring of both control diet- and HFD-fed dams were weaned onto control and HFD, creating four groups. Results When compared to their control diet-fed littermates, offspring of HF-dams weaned onto HFD gained greater body weight; had increased relative liver weight and showed hepatic steatosis and inflammation. Similarly, this group revealed significantly greater immune response and pro-fibrogenic gene expression via RNA-seq. In parallel, 7-8 week old offspring were challenged with either control or MCD diets for 3 weeks. Responses to MCD diets were also exacerbated due to maternal HFD as seen by gene expression of classical pro-fibrogenic genes. Quantitative genome-scale DNA methylation analysis of over 1 million CpGs showed persistent epigenetic changes in key genes in tissue development and metabolism (Fgf21, Ppargc1 beta) with maternal HFD and in cell adhesion and communication (VWF, Ephb2) in the combination of maternal HFD and offspring MCD diets. Maternal HFD also influenced gut microbiome profiles in offspring leading to a decrease in alpha-diversity. Linear regression analysis revealed association between serum ALT levels and Coprococcus, Coriobacteriacae, Helicobacterioceae and Allobaculum. Conclusion Our findings indicate that maternal HFD detrimentally alters epigenetic and gut microbiome pathways to favor development of fatty liver disease and its progressive sequelae.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据