4.6 Article

Enhanced light microscopy visualization of virus particles from Zika virus to filamentous ebolaviruses

期刊

PLOS ONE
卷 12, 期 6, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0179728

关键词

-

资金

  1. National Institutes of Allergy and Infectious Diseases [R01Al1096159, 1R43Al118254]

向作者/读者索取更多资源

Light microscopy is a powerful tool in the detection and analysis of parasites, fungi, and pro-karyotes, but has been challenging to use for the detection of individual virus particles. Unlabeled virus particles are too small to be visualized using standard visible light microscopy. Characterization of virus particles is typically performed using higher resolution approaches such as electron microscopy or atomic force microscopy. These approaches require purification of virions away from their normal millieu, requiring significant levels of expertise, and can only enumerate small numbers of particles per field of view. Here, we utilize a visible light imaging approach called Single Particle Interferometric Reflectance Imaging Sensor (SP-IRIS) that allows automated counting and sizing of thousands of individual virions. Virions are captured directly from complex solutions onto a silicon chip and then detected using a reflectance interference imaging modality. We show that the use of different imaging wavelengths allows the visualization of a multitude of virus particles. Using Violet/UV illumination, the SP-IRIS technique is able to detect individual flavivirus particles (similar to 40 nm), while green light illumination is capable of identifying and discriminating between vesicular stomatitis virus and vaccinia virus (similar to 360 nm). Strikingly, the technology allows the clear identification of filamentous infectious ebolavirus particles and virus-like particles. The ability to differentiate and quantify unlabeled virus particles extends the usefulness of traditional light microscopy and can be embodied in a straightforward benchtop approach allowing widespread applications ranging from rapid detection in biological fluids to analysis of virus-like particles for vaccine development and production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据